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Generation of initial wavelets by instability of a coupled 
shear flow and their evolution to wind waves 
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(Received 4 May 1978 arid in revised forin 16 November 1978) 

The generation of initial wavelet’s, which appear a t  the initial stage of the generation 
and growth processes of wind waves after the abrupt start of the wind on a still water 
surface, has been investigated by systematic experiments together with theoretical 
analyses. The energy of the initial wavelets, measured by a resistance-type wave 
gauge of 50 pm diameter, grew exponentially with time a t  a constant frequency. The 
frequency and the growth rate were independent of the fetch but did depend on the 
friction velocity u*, of the air. The phase velocity of the initial wavelets, measured by 
a shadowgraph-photography technique, was nearly constant, independent of u*,. 
A coupled shear flow model in the air and water was examined, to explain the observed 
characteristics of the initial wavelets in terms of the instability mechanism. The 
theoretical analysis showed that, for each shear flow pattern observed in the experi- 
ments, there exist waves whose growth rate is maximum. The frequency, the growth 
rate and the phase velocity of these critical waves were virtually coincident with those 
properties of the observed initial wavelets. It is concluded that the generation of wind 
waves, whose initial stage is called the initial wavelets, is caused by the selective 
amplification, by the instability mechanism, of the small perturbations which in- 
evitably occur in the flow. 

The limitation of the linear instability theory as applied to the process of further 
growth of the wind waves is also discussed. From some facts recognized through 
detailed observations, it is inferred that the phenomena controlled by the linear 
mechanism last for only about 10 s, and that these evolve to the wind waves which are 
characterized by inherent nonlinearity. 

1. Introduction 
During the last two decades, Phillips’ (1957) resonance mechanism and Miles’ 

(1957 a )  instability mechanism have been referred to, whenever the mechanisms of 
generation and growth of wind waves are discussed. Turning his attention to the 
complementary relation between the two mechanisms, Miles (1960) proposed the 
Phillips-Miles combined mechanism, and thereafter, Miles’ mechanism has been 
considered efficient as the growth mechanism of wind waves, and Phillips’ mech- 
anism as the generation mechanism or as the trigger mechanism before Miles’ mech- 
anism becomes efficient. I n  fact, Phillips’ mechanism was shown later to be ineffective 
as the growth mechanism, since the pressure fluctuations in a turbulent atmosphere 
are much smaller than was originally assumed by Phillips, as pointed out by Stewart 
(1974). On the other hand, Miles’ mechanism was also shown to be ineffective as the 
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growth mechanism (see, for example, the observation by Snyder 8~ COX 1966), since 
the growth rate expected from the theory was far smaller than the observed one. Thus, 
for the generation stage, Phillips’ mechanism has been left without any definite 
evidence to examine its efficacy. For the growth stage, although some efforts were 
made to modify Miles’ mechanism, for example by taking into account the turbulence 
in the air, no conclusive results have been obtained. 

The results of our recent experiments on the detailed structure of wind waves also 
strongly suggest that the two current mechanisms are not effective during the growth 
stage, and demand an entirely different approach in order to investigate the growth 
mechanism of wind waves. Toba et al. (1975) showed that the growing wind waves 
are accompanied by forced convection relative to the crest of individual waves. These 
conspicuous structures of wind waves can hardly be represented by a superposition of 
sinusoidal component waves. Okuda, Kawai & Toba (1977) showed that the stress a t  
the water surface exerted by the wind is maintained almost entirely by the shearing 
stress concentrated on the windward face near the crest of the individual waves. This 
fact conflicts with the mechanisms in which the pressure distribution along the water 
surface plays an essential role in transferring momentum from the wind to the waves. 
Based on these revelations of strong nonlinearity in the growth process of wind waves, 
Toba ( 1 9 7 8 ~ )  proposed the stochastic form for the growth of wind waves in a single- 
parameter representation. 

Recently, Larson & Wright (1975) showed, by an observation using microwave 
backscatter, that the spectral amplitude grows a t  an exponential rate in the first 
stage of the development of wind waves. From this fact, it is expected that the initial 
growth of wind waves is caused by one of the instability mechanisms such as Miles’ 
mechanism, rather than a resonance mechanism as proposed by Phillips. In  fact, 
Valenzuela (1976) applied the shear flow instability theory to a model of two-layer 
viscous fluids and showed that the growth rate observed by Larson & Wright agrees 
with that expected from the theory. However, he did not discuss the relation between 
the observed fact and the generation mechanism itself. In  order to  discuss the genera- 
tion mechanism, it is necessary to make measurements of various quantitative proper- 
ties of waves initially generated with some specific characteristics, and thus to clarify 

Now we describe, as an introduction, an outline of the time sequence of the phenom- 
ena appearing after the abrupt start of the wind on the water surface. A shear flow 
first starts and grows in the uppermost thin layer of the water, and then the appearance 
of waves follows several seconds later. The waves which appear initially are long- 
crested and regular, and so they are distinguished from those appearing later, which 
are short-crested, irregular and accompanied by forced convection. The distinction 
between the two kinds of waves is clearly shown in figure 1 (plate 1) which is a 
sequence of photographs of the water surface. The photographs were taken a t  about 
0.6 s intervals by a camera facing vertically downward. 

The work reported here is aimed a t  revealing the nature of the initially appearing 
waves and their mechanism of generation. I n  this report, the initially appearing 
waves are called the ‘initial wavelets’ after Kunishi (1963), but with a restricted 
meaning. Kunishi (1963) used the same terminology to refer also to the waves appear- 
ing a t  short fetches in the fetch-limited case of stationary wind waves. This is due to 
the fact that the fetch-limited wind waves have many similar aspects to wind waves 

-- the mechanism which can select the waves having the specific characteristics. 
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which are growing in time, as will be shown later. In  the following discussion the term is 
used to refer only to the latter, but when it is necessary to distinguish them, the former 
are called the spatial initial wavelets and the latter the temporal initial wavelets. 

So far, there has been no systematic study of the temporal initial wavelets, though 
there have been a few studies on the spatial initial wavelets, such as those of Kunishi 
(1963) and Plate, Chang & Hidy (1969). The lack of systematic studies on the temporal 
initial wavelets might have been caused by difficulties in experiment and statistical 
treatment of data, since the duration of the temporal initial wavelets is very short, as 
will be described later. In  fact, an attempt by Hidy & Plate (1966) failed to clarify 
the nature of the temporal initial wavelets, because of the limitation of the method of 
statistical analysis applicable a t  that time. This is in contrast with the success of 
Plate et al. (1969) in clarifying the nature of the spatial initial wavelets. In  their recent 
work, as was already mentioned, Larson & Wright (1975) succeeded in measuring the 
temporal growth rate of wind waves in the first stage of their development. One of the 
reasons for their success was that they overcame the difficulties that Hidy & Plate 
(1966) encountered in representing the unsteady process of wind waves, by using a 
new technique to obtain the spatial average of wave energy over the surface area 
illuminated by the antenna which transmits microwaves. However, they were not 
able to obtain the continuous spectrum of waves due to another limitation of the new 
technique. They obtained only the energy growth rate for waves of six fixed wave- 
numbers. In  order to investigate the nature of the initial wavelets, especially their 
frequency or wavenumber, it  is necessary that the time series of their continuous energy 
spectrum be measured, either in the frequency space or in the wavenumber space. 
Fortunately, a new method of spectral analysis has been developed in the last decade, 
which enables us to calculate the time series of the continuous spectrum of wind waves 
including initial wavelets. The experimental procedures will be described in § 2 and 
the methods of data analysis and the results in 8 3. 

The results of the experiment are suggestive of a certain instability mechanism for 
the generation of initial wavelets. Therefore, a shear flow model of the flow in the air 
and water is examined, to explain the observed nature of the initial wavelets in terms 
of the instability mechanism which will be formulated in 4. Numerical procedures 
to solve the problem will be described in § 5. This model is taken as the generation 
mechanism of initial wavelets, as will be described in Q 6. 

2. Experimental apparatus and measuring instruments 
2.1. Wind-wave tunnel 

The experiments have been made with a wind-wave tunnel 60 cm in width, 20 m in 
length and 120 cm in height, containing water of 70 cm in depth. A schematic picture 
is shown in figure 2. A gap between the mean water level and the inlet junction plate 
is smaller than 2 mm ; therefore no notable disturbances of water surface were created 
at the junction between the plate and the water surface. At the downstream end of the 
tank, a permeable-type wave absorber is installed. An axial fan installed a t  the up- 
stream end controls the wind speed, which may be changed continuously from 0 to 
18 m s-l. The air flow is made uniform by a honeycomb, four fine mesh screens made 
of steel wire and twenty-four coarse mesh grids made of hemp yarn in the inlet duct. 
The mesh size of the screens is 2.5 x 2.5 mm and the diameter of the wire is 0.3 mm, 
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FIGURE 2 .  Schematic sketch of the wind-wave tunnel. 1, Shutter; 2 ,  blower; 3, flexible joint; 
4, fine mesh screens; 5 ,  honeycomb; 6, coarse mesh grids; 7, junction plate; 8, water tank; 
9, wave absorber; 10, water inlet (outlet); 11, water outlet for water surface cleaning. The units 
are centimetres. 

and for the grids, these values are 60 x 70 mm and 2 mm, respectively. To eliminate 
the influence of the vibration of the fan and motor unit on the measurements, the unit 
is installed on a vibration-isolated framewith rubber shoesand connected to the wind- 
wave tunnel by a flexible joint made of canvas. To realize the condition of an abrupt 
start of the wind, a shutter is placed a t  the intake of the fan. The shutter can be 
abruptly opened after the rotation of the fan becomes stable. An event mark was 
recorded simultaneously on a chart recording signals from wave gauges, by an electric 
switch placed a t  the shutter, a t  the time when the shutter was fully opened. The time 
indicated by the event mark is the origin of the time co-ordinate throughout the 
following discussion. In order to  remove surface films of contaminant, the surface 
was cleaned by overflowing the water using the addition of water from the bottom 
together with a gentle wind, and also by blowing off the surface films with strong wind, 
at suitable intervals during the experiments. 

2.2. Measuring instruments for the initial wavelets 

Initial wavelets were measured by a resistance-type wave gauge of a single platinum 
wire of diameter 50 pm. The gauge is built in a bridge circuit designed by Kunishi 
(1959). The bridge circuit with the gauge is connected to  a dynamic strain meter of a 
standard type, which consists of an oscillator of carrier, a discriminator and an amp- 
lifier. Mitsuyasu & Honda (1974) used a similar system to measure the high frequency 
spectrum of wind waves, and showed that the amplitude response factor for a single 
platinum wire gauge with a diameter I00 ,urn is approximately unity up to 80 Hz, 
with a careful and skilful measurement. As the amplitude response factor of this kind 
of wave gauge mainly depends on the thickness and material of the wire, the amplitude 
response factor of the present wave gauge for measuring initial wavelets is safely 
expected to  be unity up to  80 Hz. 

A long period variation of water level was seen due to the set-up by the wind, 
especially a t  the start of the experiment, as shown in figure 3 which is a trace of an 
oscillograph chart. To prevent the long period variation bringing the signal over the 
measuring limit of recorder, another signal. was also recorded through a high-pass 
filber of 3 Hz cut-off frequency, as shown in figure 3. The oscillation of about 2 Hz, 
seen in the trace of the filtered signal before the sudden appearance of the initial 
wavelets, is expected t o  be the lateral oscillation of the water in the tank. 

Figure 4 shows an example of the calibration curve of the wave gauge. A linear 
relation is seen up to about 3 em in the change of water level. The maximum variation 
of water level in the main parts of the present experiments was about 5 mm, including 
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FIQURE 3. A trace of an oscillograph chart showing, from the top to the bottom, event marks, 
direct signal of wave gauge, filtered signal of wave gauge, wind speed measured with a hot-film 
anemometer a t  height 3 cm above the mean water level and 0.1 s time marks. Event marks: (a) 
the time when the shutter begins to open; ( b )  the time when the shutter is fully opened, 
being the origin of the time co-ordinate in the present study; (c) the time when the initial 
wavelets are observed with the naked eye for the first time; (d )  the time when the appearance 
of water surface changes from regular to irregular for the naked eye. The event marks (a) and 
( b )  are automatically entered with a switch placed a t  the shutter. The event marks (c) and 
(d)  are manually entered with a switch in the hand. F = 9 m; U, = 6.9 m s-l. 

the long period variation due to the set-up by wind; consequently, the whole range 
was within the linear range of the calibration. 

Since the wave height of the initial wavelets is very small, the water level resolution 
of the wave gauge is also important. Figure 5 shows another example of the calibra- 
tion curve of the wave gauge when the water level is changed in steps of 26-2,um 
which is the minimum value of our apparatus for calibrating the wave gauge. It can 
be said, from the figure, that the resolution of the wave gauge is better than 26'2 pm. 

It should be noted that the methods of recording and digitizing the output signal 
from the wave gauge are different in the two series of experiments I and 11, of which 
the details will be described in the next section. In I the signal was recorded on an 
electromagnetic oscillograph whose response factor is unity up to 750Hz, and 
digitized manually with a scale rule. In  I1 the signal was recorded on an FM 
magnetic tape recorder whose response factor is unity up to 500 Hz, and digitized 
automatically by an a.d. converter. For both cases, the noise level is estimated to be 
lower than 1 % of the signal level. 

To measure the phase velocity of the initial wavelets, a method of shadowgraph- 
photography devised by Koga & Tobat was used. The images reflected by a mirror 
which was placed at the bottom of the water tank at  an angle of 45" with the bottom 
plate, were photographed by a 16 mm cinecamera which was directed horizontally 
and perpendicularly to the side wall of the tank made of glass plates. A tracing paper 
to illuminate the background of the view was placed on the upper cover of the wind- 
wave tunnel which was made of transparent acrylate resin, and illuminated by a 
stroboscope synchronized with the shutter of the cinecamera. The phase velocity of the 
initial wavelets was estimated from adjacent frames, by measuring the distance 
travelled by certain crests during the time between successive frames. These pictures 
were not used to measure the wavelength of the initial wavelets, becasue they were 
too scanty in number to determine reliable values of wavelength from them. 

t Study on the distribution of water droplets produced on wind-wave surface (to be published). 
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FIGURE 4. Linear calibration of the wave gauge. The unit of the abscissa is 
the step of irnmersion of the wave gauge. 

2.3. Measuring instruments forJtows in water and air 

The flow in the water was measured by flow visualization techniques, which were 
reported in detail by Okuda et al. (1976) with several photographs. I n  brief, hydrogen 
bubble lines produced by the electrolysis of water were emitted from a 50 pm platinum 
wire which was stretched vertically through the interface, and they were photographed 
by a 16 mm cinecamera as tracers of flow in the water. The instantaneous velocity 
profile was estimated by measuring the vertical distribution of the distance between 
adjacent bubble lines and dividing the distance by the interval a t  which the hydrogen 
bubble lines were emitted by an electric pulse generator. It is noteworthy that, in the 
process of the estimation of the velocity profiles, they were corrected by the 
ascent velocity of bubbles which was measured separately. Not only the velocity 
profiles, but also the wind stress exerted at the interface, may be determined with the 
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Elevation (26.2 pm) 

FIQURE 5. A calibration for the resolution of the wave gauge. The wave gauge is moved down- 
ward (.) or upward ( x ) in steps of 26.2 pm, which is the minimum value of our apparatus for 
calibrating the wave gauge. 

method. The wind stress measured a t  the initial stage of the development of wind 
waves, as will be described later, is much smaller than that determined when wind 
waves are in a fully developed state, and it seems almost impossible to estimate the 
former with other methods such as profile measurements of this air flow, since the 
conditions are varying temporally within a very thin boundary layer. 

In  order to measure the flow in the air, three kinds of instruments were used. The 
first is a hot-film anemometer for measuring the rising stage of the wind speed at the 
start of the wind. An example of the record is shown in figure 3. The second is a Pitot- 
static tube and a pressure-difference meter for measuring the wind profile in the steady 
state. The third is a photoelectric-type windmill anemometer installed at the inlet 
of the tunnel for measuring the wind speed in the steady state, and this value is used 
in this paper as the reference wind speed U, to represent the experimental conditions. 

3. Results of the experiment 
3.1. Properties of initial wavelets in I 

Two series of experiments were carried out. The first, I, was made to examine the 
characteristics of the initial wavelets in relation to the wind speed and the fetch. The 
number of experimental cases is twenty and their conditions are listed in table 1, 
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6 

9 

Fetch U, 
(4 (m 8-1) 

3 4-2 
5.0 
5.6 
6-3 
6.9 
7.7 
4.2 
5.0 
5.6 
6-3 
6.9 
7.7 
8.4 
4.2 
5.0 
5.6 
6.3 
6.9 
7.7 
8.4 

%lo 

(cm 8-l) 

0.56 
0.61 
0.7 1 
0.73 
0.88 
0.95 
0-52 
0-63 
0.67 
0-72 
0.85 
0.89 
1.00 

0.47 
0-61 
0.66 
0.75 
0 8 2  
0.90 
1.01 

TABLE 1. Conditions of experiment I. 

%a 
(cm 8-1) 

15.8 
17.2 
20.0 
20.5 
24.8 
26.8 
14-6 
17.7 
18.9 
20.3 
23.9 
25.0 
28.1 
13.1 
17.0 
18.4 
20.9 
22.9 
25.1 
28.2 

where U, is the reference wind speed measured at the centre of the inlet section, u*, 
the friction velocity of the water a t  the interface determined from the velocity profile 
of the water flow measured a t  the time when the initial wavelets are seen, and u*, the 
friction velocity of the air determined from u*, assuming the continuity of the shearing 
stress a t  the interface. In  the following discussion, these values of u*, are used as the 
values of friction velocity relating to the generation and growth processes of initial 
wavelets. The slight inequality referred to the fetch, seen in the values under the same 
reference wind speed, seems to be caused by some indefiniteness in determining u*, 
through averaging the scattered values each of which is estimated from the instant- 
aneous velocity profiles, rather than by the fetch-dependency of the friction velocity. 
More detailed descriptions of u*, will be given later in 5 3.3. 

To represent the generation and growth processes of initial wavelets, wave data 
were divided into many segments of carefully chosen length, and the power spectrum 
was calculated for each segment under a hypothetical condition of quasi-steady state, 
to construct the time series of the power spectra at adequate intervals. In order to take 
reliable spectra with sufficient resolving power, the length of the divided data must be 
long. On the other hand, it must be short, in order to express properly the unsteadiness 
of the process. The two opposing necessities cannot be reconciled by conventional 
methods of spectral analysis. This is the difficulty that Hidy & Plate (1966) encoun- 
tered. A new method of spectral analysis, originated by Burg (1967), called maximum 
entropy method (MEM), has been developed in the last decade. Since the method 
makes it possible to calculate reliable spectra with certain resolving power from rel- 
atively short data, the above-mentioned difficulty can be overcome by use of this 
method. Strictly speaking, we used Akaike’s (1969) method for the estimation of 
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0 10 20 30 40 50 

f (Hz) 
FIQURE 6. A time series of power spectra for a case of experiment I. fi is the frequency of initial 
wavelets. The conditions of the data analysis : digitizing interval At = 0.01 s; data number per 
sample N = 50;  maximum lag number L = 20; the number of samples averaged for one spec- 
trum NS = 1. FPE criterion is used. P = 3 m; U,  = 6.9 m s-l. The various ranges o f t  (6) are: 
- ..-, 2.0-2.5; ..... . . . ., 2.25-2.75; ---- , 2'5-3.0; -.- , 2.75-3.25; -, 3.0-3.5; - 
3.25-3'75; -.-, 3.5-4.0; - - - - , 3.75.4.25; . . . . . . . . ., 4.0-4.5; -. .-, 4.25-475; -. . .-, 
4.6-5.0. 
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power spectra through an autoregressive model, which was shown to be identical with 
MEM by Ulrych & Bishop (1975). 

The wave data analysed in the present study are those passed through the electric 
high-pass filter. The conditions of the data analysis in I are as follows. The digitizing 
interval is 0-01 s, data number per sample 50, the calculating interval of spectra 0.25 s, 
the maximum lag number 20, and the order of autoregressive model is decided from the 
condition that the final prediction error (FPE) becomes minimum, according to  
Akaike (1970). In  figure 6 is shown an example of time series of power spectra. We 
may recognize from the figure that there are two stages in the evolution of the spectrum. 
In the first stage, the frequency fi of the spectral peak is kept nearly constant and its 
energy increases with time. Then in the second stage, the decrease of the frequency 
commences and the increase of energy is not necessarily monotonic, although the 
energy increases statistically with time. These tendencies are similar to those seen in 
the sequence of the power spectra of fetch-limited wind waves observed by Plate 
et al. (1969), and the fact shows that the qualitative description by Kunishi (1963) is 
correct about the similarity between the temporal and spatial growth processes of 
wind waves. Those waves with a constant frequency which appear a t  the first stage of 
development are the waves termed initial wavelets. It should be noted here that the 
spectral density function obtained in the present study by the analysis with MEM is 
continuous in the region of frequency from zero to the Nyquist frequency; 
consequently the frequency of the initial wavelets can be decided minutely. 

Those general tendencies are seen in all cases of the experiment as shown in figure 7; 
except the cases of lower wind speeds in which the spectral analysis is made only in the 
earlier stage of t.he development and the decrease of the frequency of the spectral peak 
is not necessarily clear. The figure shows the time series only of the spectral peak. The 
plots start from the double-circle point a t  the bottom and, for each case, move up- 
ward keeping approximately the same value of f i ;  they then move left and upwards 
in a more or less irregular manner. For each of three cases the experiment was carried 
out twice; these are shown simultaneously in the figure with different symbols, that 
is, a solid line and a broken line. I n  the figure, points with a figure 2 indicate that there 
is a spectrum without significant peaks at the succeeding sampling time. 

Figure 8 shows the correlation of the frequency fi of the initial wavelets with u*, 
for all cases of experiment I by symbols of solid circles, semi-solid circles and open 
circles, for three fetches 3, 6 and 9 m, respectively. It is seen that fi is apparently 
dependent on u*, but independent of the fetch, although the points are rather scattered, 
presumably because only a single experiment a t  each point is not necessarily 
representative. I n  figure 8 the frequency of the spatial initial wavelets measured by 
Plate et al. (1969) is shown by plus symbols. As to the cause of the apparent difference 
between the frequencies of the two kinds of initial wavelets, this will be discussed 
in 9 6. 

Figure 9 shows the correlation of the energy growth rate p of the initial wavelets 
with u*, for all cases of I with the same symbols as in figure 8. The values /3 are decided 
from the gradient of the straight lines of best fit drawn in the figures correlating the 
logarithm of the energy density of the spectral peak with the time. Although the 
points in figure 9 are more scattered than in figure 8, it is seen that pis also dependent 
on u*, but independent of the fetch. 

23 ELM 93 
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FIQURE 8. Correlation between u*, and the frequency fi of the observed initial wavelets to- 
gether with the frequency of the waves whose theoretical growth rate by the two-layer model is 
maximum. Observed values by Plate el al. (1969) are those of spatial initial wavelets (+). 
Experiment I: 0 ,  F = 3 m, N S  = 1 ; 0 ,  F = 6 m, N S  = 1 ; 0, P = 9 m, N S  = 1. Experiment 11: 
x , F = 8m, NX = 8. Theory: 0, U,lu*, = 5.0; A, UJu,. = 8.0. 

3.2. Properties of initial wavelets in II 
To make the spectra more reliable, four series of experiments were carried out in 
11, each of which consists of eight experiments under a fixed condition. I n  order to 
estimate the frequency fi and the growth rate p of the initial wavelets, the time series 
of the average spectra of the eight samples were constructed for each experimental 
condition. Since fi and ,6 of the initial wavelets are independent of the fetch, as shown 
in I, the experiments were made a t  a fixed fetch of 8 m, for four wind speeds. The wind 
conditions are shown in table 2, where the same items as in table 1 are listed, together 
with the maximum wind speed Urn and the friction velocity of the air u*,,,~ which was 
determined from the wind profile a t  the fetch of experiment in the steady state after 
the wind waves became fully developed. It is noteworthy that not only u*~ ,&  but 
also 0.05 times the representative wind speed such as V, or Urn is much greater than u*, 
which was measured a t  the same time as the first appearance of initial wavelets. The 
fact shows that Valenzuela (1976) overestimated the friction velocity of the air at the 
initial stage of development of wind waves, since he used the factor 0.05 to estimate 
the friction velocity from the representative wind speed observed by Larson & Wright 
(1975), although the difference .between the wind-wave tunnels may introduce some 
uncertainty to the argument. 

Figure 10 shows, as an example from 11, a sequence of spectra throughout the 
generation and growth processes of wind waves, or from the initial wavelets to the 
wind waves in their statistically stationary state. As to the conditions of the data 
analysis, there is a difference in the sampling time referred to the time from the start 
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FIGURE 9. Correlabion between u*, and the growth rate p of the observed initial wavelets 
together with the theoretical maximum growth rate by the two-layer model. Symbols as in 
figure 8. 

ur U* W %a urn %a, st 

(m s-l) (cm a-l)  (cm 9-l) (m 9-l) (cm s-l) 

4.2 0.47 13.6 4.3 18.3 
5.1 0.59 17.0 5.5 24.9 
6.3 0.74 21.4 6.9 42.8 
7 4  0.86 24.8 8.1 59.3 

TABLE 2 .  Conditions of experiment 11. 

of the wind as shown in the figure, where At is the digitizing interval, N the number of 
data per sample and N S  the number of samples averaged to  calculate one spectrum. 
Maximum lag number L may be computed by an equation L = 2 J N ,  after Akaike & 
Nakagawa (1972). TheFPE criterion is used to decide the order of autoregressivemodel. 

From the figure it can be seen, besides the general tendency described by figure 6, 
that  the spectral form at the higher-frequency side of the spectral peak is steeper and 
more smooth for the spectra of the initial wavelets than for those of the later wind 
waves. We do not, however, discuss the problem further, because accumulation of 
data is necessary in order to define the spectral form, The conspicuous lower-frequency 

23-2 
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peak seen in the spectra of the developing wind waves is due to the lateral oscillation 
of the water in the tank. When the initial wavelets were analysed, this oscillation had 
been reduced from the data with the Fleck & Fryer (1953) numerical filter that filters 
off half of the energy at  2 Hz. It is noteworthy that the time when the spectral 
peak frequency starts to wander from the frequency of the initial wavelets, coincides 
well with the time when the wave surface changes from regular state to irregular. The 
time of the visual change of the surface was also recorded manually with a marker 
switch simultaneously in the electromagnetic oscillograph or the monitoring pen- 
writing oscillograph, as shown in figure 3. 

Figure 11 shows the sequences of the spectra of initial wavelets for all cases of I1 
from the generation of initial wavelets to the time when the spectral peak frequency 
starts to wander. The case shown in figure 10 corresponds to figure 11 ( b ) .  The condi- 
tions of the data analysis are shown in the figure, except the common conditions which 
are the equation L = 2 J N  and the FPE criterion to decide the order of autoregressive 
model. Generally, the frequency of the initial wavelets is remarkably stable, demon- 
strating clearly the existence of initial wavelets with a constant frequency. The 
frequency fi is about 10.5 Hz for the case U ,  = 4-2 m s-l, although there exist spectra 
having multiple peaks other than the second harmonics of the initial wavelets, in- 
cluding a peak a t  the low-frequency side. The energy at low-frequency was caused by 
the residual long period undulation and the lateral oscillation leaked from the electric 
high-pass filter and the numerical high-pass filter. For the case V ,  = 5-1 m s-l, fi is 
most stable and 14.5 Hz. For the case V, = 6.3 m s-l, fi is about 17.0 Hz, although 
there is a slight trend toward a lower frequency with time. For the case V, = 7.4 m s-l, 
fi is about 20.5 Hz, although there are only two spectra since the duration of initial 
wavelets is very short. These values of fi are shown in figure 8 (denoted by the symbol 
x ) as a function of u*,. There is no systematic difference between I and I1 in the 
correlation of fi with u*,. 

The growth of the energy of initial wavelets with time is shown in figure 12 for all 
cases of 11. An exponential growth law holds up to a certain time. The values of the 
growth rate ,8 estimated from the gradient of the lines drawn in the figure are also 
shown, and their correlation with u*, is shown in figure 9 by the same symbol as in 
figure 8. It should be noted here that the points plotted in the counterparts of figure 12 
for I are more scattered than in figure 12, and consequently, the determination of the 
values of ,8 was less precise than in figure 12. It seems that the slight difference between 
I and I1 in the correlation of p with u*, is caused by this, and that the values of the 
growth rate in I1 are more reliable than those of I. 

As for the phase velocity of the initial wavelets, the observation was made only for 
the cases in I1 and not for the cases in I. The determination was performed only once 

L E G E N D  T O  F I G U R E  10 

FIGURE 10. A sequence of spectra from the initial wavelets to the stationary wind waves for a 
cam of 11. The equation L = 2,/N and FPE criterion are used. U, = 5.1 m s-l. Initial wavelets, 
At = 0.005 s, N = 128, N S  = 8, ranges fort (8) are: - ,8.00-8.64; -.- , 8.64-9.28; - - -, 
9.28-9.92 ; . . . . . . . , 9.92-10.56; -. .-, 10.56-11.20. Developing wind waves, At = 0.01 S ,  

N = 512, NS = 8, ranges for t (8) are: - - -, 10.24-15.36; . . . ' .  . . . ., 12.80-17.92; --a-, 

15.36-20.48; -. .-, 17.92-23.04; . - .  . .  . . . -, 20.48-25.60. Steady wind waves, At = 0.02 8, 
N = 1664, NS = 1 ,  the range for t is 40.96-74.24 s (---). 
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I ?  1s 20 
3.5 (I 4.0 

FIQURE 12. Change of the energy of the initial wavelets with time for all cases of 11. p is the 
exponential growth rate of energy. (a )  U, = 4.2 m s-l, ,4 = 0.53 s - ~ ;  ( b )  U, = 5-1 m s-l, @ = 1-25 
s-l; (c) U, = 6.3ms-l;  ,8 = 2.47 s-l;  (d )  U, = 7.4 m s-l, ,8 = 6.33 s-l. 

for each case of the experiment, because the phase velocity of the initial wavelets 
is decided from a single observation much more definitely than their frequency or 
wavenumber. The results will be shown in § 6. 

Direct comparison of our results with those of Larson & Wright (1975) is impossible, 
since they did not refer to the initial wavelets. However, since the initial wavelets are 
the waves whose growth rate is maximum, as will be shown later theoretically, and 
they obtained the relation between the growth rate and the wavenumber, we can, to 
some extent, show consistency between the two experiments; however, we have to be 
careful with the difference in the definition of the growth rate j3. In  their report, the 
growth rate with the present meaning was represented with a notation j3,. If the 
difference is taken into account, figure 8 of Larson & Wright (1975) can be converted 
into figure 13. The values of friction velocity for our results are represented by 
those measured a t  the fully developed stage, that is u*a,st listed in table 2, for the 
sake of ready comparison with their results. The crosses represent our results, where 
the wavenumbers are calculated from the frequency and the phase velocity of 
observed initial wavelets. The points with other symbols represent their results, and 
they are connected smoothly and somewhat arbitrarily by solid lines. The points with 
the maximum value of growth rate in each line are connected by a broken line. Since 
the line passes near the crosses, the consistency between the two experiments 
can be said to be confirmed. However, they are not necessarily consistent as to the 
dependence on u*,,,~. The inconsistency may be caused by differences of the wind- 
wave tunnels, the most important one being related to the presence or absence of 
a top cover. 

3.3. Properties of the mean velocity of air and water 

The velocity of the flow in the water was measured by a flow visualization technique 
described in 5 2, from the start of the wind to the time when the technique becomes 
unusable due to halation and the distortion of hydrogen bubble lines by the wave 
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FIGURE 13. Correlation of growth rate /3 to wavenumber k. ., 0 ,  A, 0, 0, converted from 
figure 8 of Larson & Wright (1976) ; x , results of this study for the initial wavelets. Friction 
velocities in the air u , , , ~ , ~ ~  measured at the fully developed stage are given in cm s-l. 

motion. Since the flow is laminar, the wind stress 70 exerted on the water surface can 
be estimated from the velocity gradient UL(0) at the surface, through the relation 

7 0  = pW vw uk(O), (3.1) 

where pw and vw are the density and the molecular kinematic viscosity of the water, 
respectively. Kawai ( 1 9 7 7 ~ )  has already shown that this estimation of the wind stress 
is accurate from comparison between the values thus estimated and those estimated 
from the wind profiles over the surface, where the wind waves are suppressed by 
addition of soap in the water, under the same wind conditions. The time series of the 
friction velocity u*, 3 ( ~ ~ / p , ) i  of the water are shown in figure 14 for all cases of 11. 
The counterparts of the figure for I are not shown because they have similar tendencies. 
The horizontal solid lines drawn in the figure represent the interval over which the 
initial wavelets are seen. The horizontal broken lines will be explained later in $ 4 .  
For each case of the experiment, the value of friction velocity approaches a constant 
value several seconds before the critical time of the first appearance of initial wavelets. 
The constant friction velocity lasts past the critical time until the observation ends 
due to the limitation of the technique. The constant values of the friction velocity 
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u*, are listed in tables 1 and 2. The values u*, in the tables are computed from the 
relation 

where pa is the density of the air, assuming the continuity of the shearing stress 
through the interface. 

(3.2) P a u L  = ~ w u 2 * w ,  
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In figure 15 are shown the time series of the flow velocity U, at the interface. The 
significance of the inserted horizontal lines is the same as in figure 14. It should be 
noted that the rate of increase in U, becomes lower a few seconds after the critical time, 
as seen in the figure. 

4. Formulation of the theory of shear flow instability 
We consider a two-dimensional stationary laminar flow in the air and the water, 

which is parallel to the horizontal co-ordinate z with velocity profile U = U(y), where 
the vertical co-ordinate y is taken positive upward from the still interface. The 
Orr-Sommerfeld equation is obtained from the first-order perturbation of the Navier- 
Stokes equation when the stationary flow is perturbed by a small disturbance whose 
stream function @ has the form 

where k is a wavenumber and c is the complex wave velocity. Thus, the Orr-Sommer- 
feld equations are 

@ ( G Y , t )  = $(y)exp[ik(z-ct)l, (4.1) 

(U, - c) (4: - k2$,) - U i  $, = (ikRe,)-l(& - 2k2$g + k4q5,), 

(U, - c) (6; - k2$,) - 6'; $, = (ikRe,)-l($z - 2k2& + k4$,), 

( 4 4  

(4.3) 

for the air motion and 

for the water motion, where Reynolds numbers are defined by the scale length 6, 
the scale velocity V,  and the molecular viscosity v of fluids, as 

respectively, and where the variables with a subscript a ar  w stand for those in the air 
or in the water, respectively, the prime represents differentiation with respect to y, 
and all variables are normalized by the scale parameters. 

At the interface the discontinuity in the normal stress must be balanced by the 
surface tension, and the shearing stress and the velocity components must be con- 
tinuous. These boundary conditions and the kinematical boundary condition at the 
perturbed interface are expressed as Taylor series expansions about y = 0. If the 
higher-order terms in these series are neglected, some computations lead to four 
homogeneous boundary conditions in terms of $ in the expression (4.1), as follows, 

Re, = V , S / v ,  and Re, = U,S/vw, (4.4) 

$a = $to, (4.5) 

respectively, at  y = 0, where U, is the velocity of the basic flow at the interface, r the 
ratio of viscosity of the two fluids, 

r = va/v,, (4.9) 
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FIGURE 15. Time series of the observed velocity U,, at the interface for all cases of 11. The 
inserted horizontal lines have the same significance as in figure 14. ( a )  u, = 4.2 m s-l; 
( h )  U, = 5-1 m s-l; ( c )  U, = 6.3 m s-l; (d )  U, = 7.4 m s-l. 
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8 is the ratio of the density of fluids 

and co is defined by 

8 = P,/Pul 

C: = (kFr)-l+ k We-l, 

(4.10) 

(4.11) 

Fr = U,Z/gS, (4.12) 

We = G - p a ) / T ,  (4.13) 

where g is the acceleration due to gravity and T the surface tension. The boundary 
conditions a t  infinity are 

qia= qii = 0, at y=m, (4.14) 

q i , = & = O ,  at y=-oo. (4.15) 

The basic equations formulated above are similar to those of Valenzuela (1976), 
but the pattern of the basic flow in the water is different. As the basic flow in the 
water, he assumed a steady logarithmic profile in the stability analysis. However, the 
observed basic flow in the water, a t  least up to the time when the initial wavelets 
appear, is neither steady nor logarithmic, as was described in the previous section. 
Moreover, since the difference of the basic flow in the water has a serious influence, 
through the difference of phase velocity, on the frequency of waves calculated from 
their wavenumber and phase velocity, the observed profiles are used for the basic 
flow in the water in the present study. To compare the observed properties of the 
initial wavelets with the properties expected from the theory of shear flow instability, 
computations are made mainly for the basic flow pattern measured a t  the critical time 
when the initial wavelets are observed for the first time in the experiment, and the 
results are compared with the values observed at  the critical time. 

To describe the observed velocity profile in the water with a functional form, the 
following expression is used : 

U(Y) = Uo[exp ( - C2) + m*5{1 + @(5)}1, for y < 0, (4.16) 

where U, is the surface velocity and expressed by 

u, = 2n-4@w(x) t - t ,  t , 
(4.17) 

5 is the dimensionless vertical co-ordinate and is expressed by 

0 is the error function defined by 

(4.19) 

and where t is the time from the start of the wind, and t, a parameter which is decided 
from the condition that the formula fits best to the observed data. This functional form 
with t, = 0 was originally introduced analytically by Kunishi (1957) for the laminar 
shear flow in the water produced by a constant wind stress at  the interface. In  the 
real conditions in the experiment, the stress was not constant a t  first but became 
constant a few seconds after the start of the wind, as shown in figure 14. However, if 
the parameter t ,  for the effective shifting time of wind start is introduced, the flow 
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U, 6va lu*a  8valu*a 
(m s-l) (cm) (em) 

4.2 0.055 0.088 
5.1 0.044 0.071 
6.3 0.035 0.056 
7.4 0.030 0.048 

TABLE 3. Estimates of the thickness of viscous sublayer in air estimated from the observed 
value u*, at  the time of observation of the initial wavelets, for all cases of 11. 

pattern (4.16) agrees fairly well with the observed values for a certain time interval in 
the vicinity of the critical time when the initial wavelets are observed for the first time, 
for the cases of the lower two wind speeds. The agreement is tested in figure 16, where 
the normalized profiles observed in the interval are shown by solid circles and the 
equation (4.16) by solid lines. The intervals are shown in figure 14 and 15 by broken 
horizontal lines. For the cases of the higher two wind speeds, the observed velocity 
profiles in the water do not necessarily follow the functional form (4.16)in thevicinity 
of the critical time when the initial wavelets are first observed, presumably because 
the critical time is so close to the time of the attainment of constant wind stress; 
therefore the water flow driven by the increasing wind stress occupies a non-negligible 
part of the water flow even at the critical time. Nevertheless, the functional form is 
used also for these cases under the condition that the observed surface velocity U, 
coincides with the functional value. The influence of the difference in the flow pattern 
in the water will be examined in $6 .  

In  contrast with these circumstances in the water, we have no observation of the 
shear flow pattern in the air except that in the state where wind waves are fully 
developed, and the structure of the air flow must be different from that a t  the critical 
time when the initial wavelets are first observed. For the latter state, however, the 
air flow is expected to be aerodynamically smooth, since the wave height a t  the 
critical time is 0-0025 to 0.005 cm and far smaller than the thickness of the viscous 
sublayer in any case as shown in table 3, although wind waves cannot be simply 
regarded as roughness elements when the wave height is larger than the thickness 
of the viscous sublayer. As the smooth flow pattern, a modified form of the pattern 
proposed and verified with observed data by Miles (1957b) is used, in which the wind 
speed U a t  the height y is represented by 

U(y) = (u",/u,) y + U, for 0 6 y < yl (4.20) 

in the viscous sublayer and by 

U(y) = U, + (u,, /~) (a- tanh +a) + U, for y1 6 y, (4.21) 

outside the sublayer. I n  this latter expression, 01 satisfies 

sinh a = PKU*,/V,) (Y - Yl), (4.22) 

where K is von KQrmBn's constant with a constant value of 0.4, y1 the thickness 
of the viscous sublayer, Ci, + U,, the velocity a t  y = yl and U, the observed surface 
velocity. According to Monin & Yaglom (1971) the dimensionless sublayer thickness 



Generation of umvelets by an instability of a shear $ow 687 

u, 1/w- t,) P w 
(m s-l) (s-l) (s-l) (9-l) 

4.2 0.06 0.5 66 
59 1 0.09 1.3 91 
6.3 0.2 2.5 107 
7.4 0.3 6.3 129 

TABLE 4. Comparison among the changing rate of observed basic flow, the observed growth rate 
and the observed angular frequency of initial wavelets, for all cases of 11. 

ylu*a/va which is equal to UJU*~, is 5.0 for the smooth flow. However, from the 
necessity that (4.21) coincides with the logarithmic law, 

U(y) = %lny*+Bu*,+U0, "a (4.23) 

at heights far above the sublayer, there is a relation between Ul/u,, and B, 

Ul/u*, = B+ 1.3. (4.24) 

If the most usual value 5-5 is taken for B, Ul/u*a is 6.8. Considering these circum- 
stances and the slight indefiniteness of B mentioned by Monin & Yaglom (19?1), 
computations are made for the two values of Ul/u*a of 5.0 and 8.0. 

Not only the basic shear flow in the water is time dependent, as seen from (4 .17)  
and (4.18),  but also that in the air is time dependent through Uo in (4 .20)  and (4.21).  
In  the present study, computations are made under the hypothetical condition of 
quasi-steady state for the basic flow. For the hypothetical condition to be applied, the 
rate of change of the basic flow ( a U / a t ) / U  must be much smaller than the angular 
frequency w of initial wavelets. In  this context, it  is worthwhile to note that the growth 
rate p of the wave energy must be much smaller than w ,  for the spectra calculated in 
the foregoing section under the same hypothetical condition to be meaningful. If the 
equation (4.17) which has the greatest rate of change in time is taken as the charac- 
teristic value of the basic flow, the rate of change of the basic flow is l / 2 ( t - t t , ) .  
With the observed values of w ,  p and t which is taken as the critical time when 
the initial wavelets are observed for the first time, the two conditions are fulfilled, 
as shown in table 4 .  

5. Numerical procedures of the problem 
The stability of the shear flow in both fluids, air and water, has been analysed by a 

number of investigators. Lock (1954) analysed the stability of the flow in the laminar 
boundary layer between parallel streams in the air and water. However, the results 
cannot be applied to the present problem, since the basic flow pattern in the analysis 
was very different from that observed in the present experiments. Miles (1 962) analysed 
the stability of the logarithmic shear flow pattern of the air flows when the wave 
motion in the water was taken into account, but he neglected the basic flow in the 
water. Since the basic flow pattern in the water has a great influence on the phase velo- 
city of waves, especially on that of short waves which are investigated in the present 
study, we cannot neglect the basic flow in the water. Larnaes (1976) also pointed out 
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that  the basic flow in the water plays an important role in deciding the characteristics 
of waves generated by the instability mechanism. Although Shemdin (1972) dis- 
cussed the influence of the shear flow in both fluids, on the characteristics of surface 
waves, his results also cannot be applied to the present problem, since he did not 
take into account the viscosity of fluids and treated only stationary waves. 

The exact analysis of the shear flow instability mechanism for the two-layer viscous 
fluids of the air and the water was first made by Valenzuela (1976). I n  the analysis, he 
examined the correlation of the growth rate of waves with the friction velocity of the 
air for six wavenumbers which correspond t o  the cases of Larson & Wright (1975) 
experiment, in which only the initial growth rate of waves was measured. I n  contrast 
with them, we measured the frequency, the growth rate and the phase velocity of the 
initial wavelets, and our problem is whether or not the observed properties of the 
initial wavelets coincide with the propert,ies of the waves whose growth rate, as pre- 
dicted by the instability theory applied to the present model, is a maximum. To solve 
the problem, the correlation between the growth rate of waves and the wave number is 
examined when the basic flow is fixed. The correlation first gives the wavenumber of 
waves whose growth rate is maximum, and then the values of frequency, growth rate 
and phase velocity of the waves can be obtained from the correlation of these properties 
with wavenumber. 

The problem formulated in the previous section is an eigenvalue problem, in which 
an eigenvalue c has to be decided under the given wavenumber k, the basic flow 
pattern desipated by Ua(y), Ui(y), Uh(O), CL(y), Vk,(y) and l i L , ( O ) ,  the physical 
properties of fluids pa, pw,  va, v, and T and the acceleration due to gravity g .  The 
problem is solved using the following procedures. First, two independent particular 
solutions satisfying the boundary conditions at infinity are solved in the air, and two 
in the water, with direct integration of the Orr-Sommerfeld equation by use of a 
Runge-Kutta numerical method, under a trial eigenvalue G. Then the error in the trial 
eigenvalue is estimated by examining how well those particular solutions satisfy the 
boundary conditions a t  the interface. With the estimated error, the trial eigenvalue 
is corrected and a new trial eigenvalue is examined in the same way. The iteration is 
continued until one is found to the desired accuracy. 

14 of the monograph by Betchov & 
Criminale (1967), except for the following three slight changes. The first is in the way 
of purifying the numerical solutions. Although several methods are demonstrated in 
the monograph, we adopted another method which is shown in appendix A of this 
article, since the latter is easier for us to understand. I n  the appendix, it brief explana- 
tion is also given why the numerical solutions have to be purified in the course of 
numerical integration. The purification was performed a t  every fifth step of the 
numerical integration, and i t  is shown that the eigenvalue determined under the 
condition is not different from that with the purification at every step. 

The second change is in the formula to estimate the error in the trial eigenvalue. This 
change is based on the difference of the region to be analysed. The formula used in 
this article is shown in appendix B, although the change is not essential. 

The third change is in the numerical treatment of the boundary conditions at  
infinity. Since the basic flow velocity (4.21) in the air increases infinitely with an 
increase of y, we cannot apply such a technique as applied in the monograph to the 
problem of the Rlasius-type flow whose velocity approaches a constant value 

These procedures are similar to those shown in 
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asymptotically. To overcome this problem, the basic flow pattern in the air outside the 
region of numerical integration is assumed as follows: 

where ysa represents the edge of the region. Moreover, for consistency with the 
present procedures of the numerical integration, the continuity of U‘ has to be assumed 
a t  y = ysa. With these assumptions, analytical particular solutions are given ouside the 
region of numerical integration, and they are used to specify the boundary conditions a t  
y = ySa. Although consideration easily shows that such a pattern cannot exist in any 
sense, the unreality of the pattern has no influence on the computational result, if ysca 
is sufficiently large. These effects are caused by the nature of the surface waves whose 
influence decreases exponentially with height. I n  the case of the two-layer model now 
considered, this technique is applied also to  the solution in the water. The values of y,, 
and its counterpart in the water ym are decided from the condition that the eigenvalue 
determined from certain values of ysa and yw attains the same value, with the desired 
accuracy, as that  determined from twice their values. I n  most cases of our computa- 
tion, the value of half the wavelength of the wave considered is sufficient. 

The value of the interval h of the numerical integration or the number N, of steps 
of the integration is decided from the condition that the eigenvalue determined under 
a certain value of h attains the same value, with the desired accuracy, with that deter- 
mined using half its value. For the integration in the water h is set to be constant, and 
N, = 300 is sufficient in most cases. For the integration in the air, however, a very large 
number of steps is necessary if h is taken as constant, because the required accuracy in 
the integration in the neighbourhood of the critical layer, which exists at a relatively 
lower position in the region of integration, demands small values of h. To overcome 
this problem, h is changed a t  the point whose height is from 3 to 30 times the height of 
the critical layer. Below the critical layer, 10 to 40 steps are taken for the integration. 
The total number N, of 500 in the air is sufficient in most cases. 

The problem was solved with an accuracy of 10-6 in terms of the relative error, since 
the value of the imaginary part of an eigenvalue ci must be decided with an accuracy 
of cm s-l to decide accurately the wavenumber k whose kci is maximum, and 
the magnitude of c, is of order 30 cm s-1. 

U(y) = U(y,,), Uff(y) = U”(y,,) for ysa < Y, (5.1) 

6. Results of numerical computation and comparison with observed 
properties 

The numerical computations were made for four patterns of basic flow correspond- 
ing to the cases of experiment 11. The values of physical properties of the two fluids 
used in the computation are pa = 1.2 x pu, = 1.0, v, = 0.15, v, = 0.01 and 
T = 72.5, where all values are in c.g.s. units, and correspond to the observed values. 
Figure 17 shows the correlation of the frequency f ,  the growth rate kci and the phase 
velocity c, with the wavenumber k, for the case U1/u*, = 5.0. I n  the figure, U, is the 
velocity a t  the interface used in the computation, which is equal to the observed value 
a t  the critical time when the initial wavelets were observed for the first time. Similar 
figures can be drawn for the case U1/u*, = 8.0. For any wind speed, there exists a wave- 
number where kci is maximum, and the wavenumber does not necessarily coincide 
with the wavenumber of waves whose phase velocity is minimum, although the 
former is in the vicinity of the latter. This fact shows that it is risky to discuss the 
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FIGURE 17. Correlation of the growth rate kci, the phase velocity c, and the frequency f to the 
wavenumber k, computed with the two-layer model for the cases corresponding to those of I1 
and UJu,, = 550. Uo is the velocity at the interface used in the computation and equal to the 
observed value a t  the critical time of the first appearance of the initial wavelets. (a) 
u+, = 13.6 cm s-l, Uo = 7.5 cm s-l. ( b )  u*, = 17.0 cm s-l, uo = 9.6 cm s-l. (c) u*, = 21.4 cm s-l, 
U,, = 9.8 cm 8-l. ( d )  u*, = 24.8 cm s-l, Uo = 10.2 cm 8-l. 
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FIGURE 18. Frequenciesf of the two kinds of critical waves, computed with the two-layer model, 
a8 a function of u+, for the case UJu*, = 5.0. m, kc, is a maximum; 0, c, is a minimum. 

mechanism relating to  a phenomenon from its single aspect, since we might conclude 
that the initial wavelets are the waves whose phase velocity is minimum, if we did not 
know any other properties than the phase velocity of initial wavelets. Fortunately, 
we now have three aspects for the examination of the observed phenomena: the 
frequency, the growth rate and the phase velocity. The above two kinds of critical 
waves can clearly be discriminated in figure 18 where their frequencies are plotted as a 
function of u * ~ ,  for the case U J U * ~  = 5.0. 

Figure 8 shows, together with the frequency of the initial wavelets observed in our 
experiment described in Q 3, the calculated values of frequency fi of the waves whose 
hi is maximum, as a function of u*,. Squares are used for the case U,/u*, = 5.0 and 
triangles for the case U J U * ~  = 8.0, and the points are connected smoothly by broken 
lines. There is no significant difference between the lines of calculated values and the 
points of observed data. Consequently, it is concluded that the observed frequency of 
the initial wavelets coincides with the frequency of the waves whose growth rate 
expected by the shear flow instability theory is maximum. The fact shown in figure 18, 
together with figure 8, emphasizes the inefficacy of Phillips' (1957) resonance mechan- 
ism a8 the generation mechanism of initial wavelets, although the ineecacy has been 
already suggested by the discrepancy in the type of growth in time. 

It is worthwhile to note here our speculation on the cause of the difference between 
the frequencies of the temporal and spatial initial wavelets which can be clearly seen 
in figure 8. Plate et al. (1969) who measured the spatial initial wavelets, transformed 
the temporal growth rate Pt computed by Miles (1962) into the spatial growth rate 
p, through the relation 

(6.1) A = P t l c g ,  
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where ca is the group velocity, but they did not take into account the influence of the 
relation on the frequency of the waves whose spatial growth rate is maximum. If the 
relation (6.1) is accepted, the frequency of the waves whose spatial growth rate is 
maximum does not necessarily coincide with the frequency of the waves whose 
temporal growth rate is maximum, since the group velocity is dependent in general 
on the wavenumber. I n  fact, some estimations from the results shown in figure 17, 
through the relation (6.1) together with 

cg = c, + k: ac,/ak:, (6.2) 

where the derivative is approximated by the corresponding finite difference, show 
the lowering of the frequency for the waves whose spatial growth rate is a maximum 
from that for temporal ones. Although the sense of the difference between the two 
kinds of critical frequency is useful to explain the difference between the observed 
frequencies of the two kinds of initial wavelets, we cannot draw definite conclusions, 
since the step in k in the above results shown in figure 17 is too coarse to  estimate 
accurately the derivative in (6.2), except for the neighbourhood of the waves whose 
temporal growth rate is maximum. The difference between the two kinds of frequency 
may not be cancelled by only the transformation (6.1), since the transformation is 
an approximate relation which is correct only in the case of near-neutral conditions, as 
was shown by Gaster (1962). Essentially, the spatial growth rate of the spatial initial 
wavelets, has to  be discussed in relation to the model in which the perturbation has a 
complex wave-number and a real frequency, instead of the present model in which the 
perturbation has a real wavenumber and a complex frequency. The examination 
of the former model and the precise verification of the relation (6.1) are future problems. 

Figure 9 shows, together with the energy growth rate of the initial wavelets observed 
in our experiment described in 3 3, the calculated values of energy growth rate /? 
or 2kci of the waves whose kci is maximum, as a function of u * ~ ,  with the same 
symbols as in figure 8. If an emphasis is placed on the values from I1 that are more 
reliabye than those from I ,  the observed values fall between the two computational 
cases Ul/u*a = 5.0 and 8.0, with an exception for the case of the highest wind speed. 
Moreover, the points of I do not deviate so far from the lines of computation. I n  the 
case of the highest wind speed, since the duration of the initial wavelets was so short 
that the energy growth rate was computed from only two spectra, the observed value 
has poor accuracy. As a result, we can also conclude that the observed growth rate of 
the initial wavelets coincides with the maximum growth rate expected by the shear 
flow instability theory. 

Figure 19 shows the computed phase velocity c, of the waves whose kci is maximum, 
together with the observed phase velocity of the initial wavelets, as a function of u*,. 
The observed values for the cases of the highest three wind speeds were determined 
a t  the critical time when the initial wavelets were observed for the first time. For the 
case of the lowest wind speed, the phase velocity a t  the critical time could not be 
observed because of a limitation of the technique, and the value plotted in the figure is 
that observed about 3.5 s later. Therefore the value for the case is presumably a little 
larger relatively, as expected from the trend of U, in figure 15 (a).  Even if these circum- 
stances are taken into account, the observed values are slightly larger than the com- 
puted values. 

Although the slight disagreement in the phase velocity is not yet explained, it can 



Generation of wavelets by an instability qf a shear froto 693 

0 10 20 30 

u..(cm s - ' )  

FIGURE 19. Correlation between ti*, and the phase velocity c, of the observed initial wavelets 
together with c, of the waves whose theoretical growth rate is maximum. The observed values 
for the cases of the higher three wind speeds are observed at  the critical time of the first appear- 
ance of the initial wavelets. The observed value for the case of the lowest wind speed is obtained 
a t  about 3.5 s after the critical time, because of the experimental difficulties stated in the text. 
0, experiment 11; 0, theory, U1/u*, = 5.0; A, theory, U1/u*, = 8.0. 

be concluded that the initial wavelets are the waves generated by the instability 
mechanism taking into account the shear flow in the air and water, since the three 
properties of the initial wavelets coincide fairly well with those of the waves whose 
growth rate expected by the shear flow instability theory is maximum. 

To examine the influence of the time dependent basic flow in the water, figure 20 
shows the contours of kci in the Re, k plane, from the state of no flow in the water to 
the state at the time when the initial wavelets were first observed, for the case 
V, = 4.2 m s-l and Ul/u*a = 5.0. I n  the figure the Reynolds number Re is defined by 

Re = U,S/v,, (6.3) 

where U, is the surface veIocity defined by (4.17) and S is the scale thickness of the 
surface boundary layer in the water defined by 

6 = 2[vw(t - t#. (6.4) 
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FIGURE 20. Contours of kc, in Re, k plane computed with the two-layer model for the case 
u, = 4.2 m s-l and Ul/u,,a = 5.0. Reynolds number Re in this figure is a linear function of time 
arid expressed by (6.5).  Solid circles represent the computed points. 

As seen from these definitions, Reynolds number so defined is a linear function of thc 
time and expressed by 

(6.5) 

where u*, is the constant friction velocity of the water listed in table 2. I n  the figure 
the wavenumber k of the waves whose kci is maximum, scarcely changes with time. 
If attention is paid to the waves whose kc, is maximum, their phase velocity increases 
with time due to the increase of the advective velocity in the water, therefore their 
frequency also increases with time. From this fact, i t  might be better to measure the 
growth of the wavenumber spectrum than to measure the frequency spectrum, in 
order to grasp the phenomena of initial wavelet generation. However, we have not 
succeeded in measuring them up to the present. Although Larson & Wright (1975) 
measured the energy growth rate of waves whose wavenumber is fixed, as already 
mentioned in 9 1, they were also unable to obtain the continuous spectrum of waves. 

I n  spite of the possible dependence on time of the frequency of the waves whose 
kci is maximum, the present experiment showed that there exist initial wavelets 
whose frequency is almost constant in time. This result is presumably due to the fact 
that the duration in which the initial wavelets can be detected was relatively short, 
and that the basic flow pattern did not develop constantly following (4.16) but 
changed to the pattern whose surface velocity is nearly constant in time, as seen in 
figure 15, a short time after the critical time when the initial wavelets were first 
observed. 

Finally, we have to examine the problem that the basic flow pattern in the water 
expressed by (4.16) did not necessarily correspond to the observed pattern, for the 
cases of the two higher wind speeds. The observed patterns fell between the pattern 
(4.16) and a linear pattern, as expected from the accelerated tendency of u*, shown 
in figure 14. As another limit of the basic flow pattern in the water, computations 

Re = 4n-4 uiW(t - ts ) /vw,  
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FIGURE 31. Three types of shear flow pattern in the water for the cwe of ue, = 24.8 cm s-l and 
U ,  = 10.2 cm s-'. -, (6.6) ; - - -, (4.16) ; - - - - - -, logarithmic profile used by Valenzuela 
(1976) with UJu,  = 5.0 and 73, = 10.2 cm s-l. n/y is the wavenumber of waves whose wave- 
length is 2y. 

were made for the cases of the higher two wind speeds with the linear pattern where 
the velocity decreases linearly downward from the observed surface velocity Uo to 
zero, and in the deeper portion it is uniformly zero. As this pattern, however, has a 
discontinuous point of velocity gradient and cannot be treated by the two-layer model, 
a pattern which resembles this was used in which there is no discontinuous point of 
U ,  U' and U",  as follows: 

U(Y)  = ~ o ( l - Y / Y o )  for 0 2 y 2 ly,, 

U ( y )  = Uo(l - 1 )  ( 1 - tanh ((9'2 l )) for y < ly,, 

where 1 yo/  is the depth where U' has a discontinuity in the original pattern. This is 
related to u*, by 

and 1 is set to 0.9. Since the differences between the computational result with the 
pattern (6.6) and that with (4.16) are smaller than 1 Hz in frequency f, 10% in the 
growth rate kci and 1 em s-l in the phase velocity cp ,  for the waves whose kci is 
maximum, the above conclusion is not changed. 

Since the examination in the foregoing paragraph shows that the shear flow pattern 
in the water has rather little effect on the eigenvalue, we should discuss further the 
logarithmic profile in the water used by Valenzuela (1976). The three patterns relating 
to the present discussion are shown in figure 21 for the case u*, = 24.8 cm s-l and 

a:, = vw UO/IYOl~ (6.7) 
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U, = 10.2 cm s-l. The logarithmic pattern in the figure is drawn following the defini- 
tion by Valenzuela (1976) with parameters UJu, = 5.0 and U, = 10.2 cm s-l. The 
scale of the abscissa shown on the right-hand side of the figure represents the wave- 
number of waves whose wavelength is twice the depth a t  the point. I n  the shallower 
region where the flow pattern has greater influence on the eigenvalue, the logarithmic 
pattern falls between (4.16) and (6.6), and one can expect that  the eigenvalue obtained 
with the logarithmic pattern is only slightly different from the present results. I n  fact, 
the growth rates calculated by Valenzuela (1976) are near the present results, if the 
difference in his definition of the growth rate from ours is taken into account. However, 
as to the other properties of the eigenvalue, significant difference exists owing to  the 
difference in Uo. If we use the relation 

to decide U,, which was used by Valenzuela (1976), U, is 19.8 cm s-l for this case and 
far greater than the observed value. This difference has a direct influence on the phase 
velocity and the frequency, although not on the growth rate. 

7. Discussion and conclusion 
We have to  discuss first the reason why the initial wavelets could not be measured 

until several seconds after the start of the wind in the present experiments. The wave 
heights of the initial wavelets a t  the critical time of their first appearance ranged from 
0.025 to  0.05 mm. On the other hand, the minimum value detectable by the wave 
gauge was less than or equal to 0.0262 mm, as shown in figure 5. This might be the 
cawe, because the minimum wave heights measured were near to this value. 

By using instruments with higher resolving power, Larson & Wright (1975) also 
observed the temporal growth process of wind waves and reported that the exponen- 
tial growth started a t  the same time as the wind started. Their results support the 
inference that the insufficient resolving power of our instrument is the cause of the 
disappearance of initial wavelets for the initial few seconds in our records. Although 
Plant & Wright (1977) reported, by use of the same instruments as those of Larson & 
Wright, that  the exponential growth started several seconds to a few tens of seconds 
later than the wind, their results should not be interpreted as denying the present 
inference, since the wavenumber range measured by Plant & Wright did not cover 
the initial wavelets. On the other hand, the experiment of Larson & Wright did cover 
them, as shown in figure 13. 

If the above discussion is taken into account, it  is concluded from the results ob- 
tained in this paper, that the generation and growth processes of initial wavelets are 
controlled by the instability mechanism entirely, from the time a t  which the wind 
starts to  the time a t  which they reach thcir maximum heights. 

I n  contrast to this conclusion, the instability mechanism has so far been considered 
efficient as the growth mechanism of wind waves, and not as their generation mech- 
anism. As the generation mechanism, Phillips’ ( 1957) resonance mechanism has been 
thought to be efficient, since Milcs ( 1  960) proposed the Phillips-Miles combined 
mechanism. This point of view was based on the fact that the instability mechanism is 
not efficient unless some initial waves, no matter how small they are, pre-exist due 
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to some generation mechanism. It has been shown in the present study, however, 
that the initial wavelets are thc waves whose growth rate by the instability mechan- 
ism is maximum, or, in other words, they are the waves selected by the instability 
mechanism. More precisely, the generation of wind waves whose initial stage is 
called the initial wavelets is caused by the selective amplification of ‘the small 
perturbations which inevitably occur in the flow ’, by the instability mechanism. The 
phrase quoted is from the section ‘Turbulence’ in Landau & Lifshitz (1959), and, 
with a similar point of view, Schubauer & Skramstad (1947) explained the generation 
of the natural oscillatory motion (Tollmien-Schlichting waves) which appears in the 
boundary flow above flat plates. 

Based on the classification by Benjamin (1963) and its interpretation by Turner 
(1973), there are three types of instability which can occur a t  a density interface across 
which there is a velocity difference. They are called class A instability which is related 
to Tollmien-Schlichting waves, class B instability which is related to  free surface 
waves and class C or Kelvin-Helmholtz instability. The phase velocity of the per- 
turbation waves calculated in the present analysis is near to that of free surface waves 
when the shear flow in the water is taken into account; consequently the instability 
relating to the initial wavelets might be interpreted as belonging to class B. However, 
it may not belong to class B,  if the physical interpretation given to the class B insta- 
bility by Benjamin and Turner is adopted. They stated that the essential factor for 
the class B instability is the curvature of the wind profile a t  the critical height where 
U = cr, while, in all the cases of the present study, the critical height was in the vis- 
cous sublayer and the curvature at that height was zero. In  this sense, the instability 
relating to the initial wavelets should be interpreted as representing a new type of 
instability or modified class B instability. 

Finally, the limitation of the linear instability theory as applied to the growth 
process of wind waves should be discussed. So far we have focused the discussion on the 
initial wavelets or the waves which are long-crested, regular and which appear at 
the initial stage of the generation and growth processes of wind waves. However, the 
duration of the initial wavelets after the start of the wind is very short, and inour 
experiments it ranges from 5 s for U, = 7.4 m s-l to 20 s for V, = 4-2 m s-l, as seen 
for example in figure 14. After this short duration, the water surface becomes covered 
by short-crested and irregular waves. The change of the surface state is distinctly 
visible, as was shown in figure 1, and the time of the visual change of the surface 
corresponds to the time when the energy of the initial wavelets reaches its maximum 
value. After that time, the spectral peak starts to move toward the lower frequency as 
the energy is increased; the general trend is seen in figure 10. However, individual 
time series of the spectral peak show complicated movements, as seen in figure 7. On 
closer inspection, the complicated movements of the spectral peak can be seen also in 
the average spectra. Figure 22 shows a continuation of the time series of the movement 
of the spectral peak for the same case as that of figure 1 1  (b) .  Each point, shown in an 
alphabetical order according to the lapse of time, represents the peak of the averaged 
spectra for the case of E{ = 5.1 m s-1. The conditions of the data analysis are the same 
as in the case of initial wavelets shown in figure l l ( b ) .  As a result, the sampling 
interval and the data length per sample for the developing stage of the wind waves are 
much shorter than those in figure 10. The points A through J correspond to  the peaks 
of the initial-wavelet spectra shown in figure 11 (b) .  Further complicated movements of 
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FIGURE 22. Detailed inspection of the observed time series of spectral peak for the case 
rl,. = 5.1 m s-l of 11. The passage of time is indicated by alphabetical order. The interval 
between successive points is 0.32 s. At = 0.005 s, N = 128 and NS = 8. The equation L = 2 JN 
and FPE criterion are used. 

the spectral peak may be interpreted as demonstrating that the linear instability 
theory cannot be applied to the stage after the duration of the initial wavelets, since 
the theory still expects a monotonic growth of waves. 

On the other hand, we have been investigating, simultaneously with the present 
study, the structure of the fetch-limited wind waves mainly by use offlow visualization 
techniques (Toba et al. 1975; Okuda et al. 1976;  Okudaet al. 1977).  From these studies, 
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it was shown that the wind waves are accompanied by some systematic or organized 
forced convection relative to the individual crests, and consequently that an expression 
in terms of linear equations is impossible. In this sense, those statistically stationary 
but irregular wind waves and the initial wavelets are quite different phenomena from 
each other. We cannot, at present, describe definitely when the linear state, including 
the initial wavelets, is transformed to the nonlinear state represented by the wind 
waves in their statistically stationary state. However, it  is inferred from the discussion 
in the foregoing paragraph that the transition corresponds to the above-mentioned 
visual change of the surface state. We can point out another fact which supports the 
inference. In their photograph 2 Toba et al. (1975) presented a sequence of photographs 
which demonstrates the process whereby neutral particles, which were placed just 
beneath the water surface, are quickly dispersed into water after the start of the 
wind. We may see from the photographs that the time when the surface state changes 
visually corresponds to the time when the neutral particles just start to disperse down- 
ward into the water. Since this implies that the turbulent motion in the water, 
characterizing the stationary wind waves, commences simultaneously with the visual 
change of the surface state, it  also supports the above inference. A more detailed 
description of the experiment and the photograph itself are referred to in their original 
paper. These studies are also briefly disGusaed in a review paper by Toba (19783). 

In  conclusion, the generation of initial wavelets can be well explained by the linear 
instability theory, but they last for only about 10 s, and the phenomena of wind waves 
are inferred to be inherently nonlinear, throughout almost all their lives after the 
short duration of the initial wavelets. The linear instability mechanism was proposed 
to explain the generation of turbulence, in theoretical studies of the breakdown of a 
shear flow, for example, while in the study of wind waves the same mechanism has been 
discussed to explain the growth process of these waves. However, the present study 
reveals that the linear instability mechanism should be considered as the generation 
mechanism also for wind waves. 

This paper is the essential part of the author’s Ph.D. dissertation (Kawai 1977 b) .  The 
author expresses his deep thanks to Professor Y. Toba and Mr K. Okuda of Tohoku Uni- 
versity for sharing physical insight. The computation contained in the present article 
was performed by use of ACOS-NEAC-700 a t  Computer Center of Tohoku University. 
This study was partially supported by the Grant-in-Aid for Scientific Research Project 
nos. 942004 and 254114, by the Ministry of Education, Science and Culture. 

Appendix A 
There exists a serious problem in the direct integration method for solving the 

Orr-Sommerfeld equation. Due to large Reynolds number, a large difference in the 
rate of change of the solution along the y direction, between the viscous mode and 
the inviscid mode, makes the numerical integration difficult (e.g. Betchov & Criminale, 
1967). If the Runge-Kutta numerical integration method is simply applied, the 
inviscid mode of the solution +p would be contaminated by the viscous mode +7 in 
certain steps of integration, say 

&,8 = +,8 + (A 1) 
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where &, is the inviscid mode contaminated by the viscous mode and h is a scalar 
value, because the numerical errors in the inviscid mode increase with the rate of 
increase of the viscous mode which is far greater than that of the inviscid mode. It 
should be noted here that the vector form + of the solution consists of zeroth to third 
differential coefficients of the solution $. Although the general solution is represented 
by a linear combination of $, and +, when h is still relatively small, the situation 
reverses itself when h becomes large. I n  our problems, 6, becomes parallel to +,, 
before the integration reaches to the interface unless some adequate measures are 
taken. To overcome this problem, a modified form of Kaplan's (1964) filtered method 
is used in the present study, which filters out the viscous mode from the contaminated 
inviscid mode 6,. The name of the method is after the classification by Gersting & 
Jankowski (1972) who reviewed the numerical schemes to solve the Orr-Sommerfeld 
equation. 

To estimate the magnitude of a certain mode contained in a solution, some prepara- 
tions arc necessary according to Betchov & Criminale (1967). Let's first consider the 
differential equation 

( U  - c) ($" - k2$) - U"4 = (ikRe)-l ($'v - 2k2 4" + k44) (A 2) 

which is the general form of (4.2) and (4.3).  When the coefficients in the equation are 
constant, it can be solved analytically and the independent particular solutions fii)s 
are as follows: 

(A 3) f $1 = exp (YYL 6 2  = exp (-YY)t 

6, = exp (PY),  6 4  = exp ( - P Y ) ,  

where 
(A 4) 

/I2 = k 2 +  U"/(V-c),  

y2 = k2 + &Re( U - c), 

Re(P) > 0, 

for sufficiently large Reynolds number Re, where Re represents the real part. A 
solution $ is represented by a linear combination of the particular solutions, say 

where ai's are the coefficients of linear combination. Substituting (A 3) into (A 5)) and 
solving them for ails, they are 

a, = 

a2 = 

aJ3 = 

a4 = 

The relations show that the magnitude ai's of the individual particular solution in 
(A 3) contained in a solution 4 can be estimated from the zeroth to third differential 
coefficient of the solution. Although the coefficients in the equation (A 2) are not 
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constant in general, they are assumed constant locally according to Betchov & 
Criminale (1967). 

In the actual purification procedures, a2 for the solution in the air and a, for the 
solution in the water are used to estimate the magnitude, say A ( + ) ,  of the viscous 
mode contained in a certain solution, say +, where the values of y and p are computed 
from (A 4) with local values of U and U" at the point considered. As the magnitude of 
the viscous mode in the inviscid mode must be zero, 

A(+@) = 0,  (A 7) 

Substituting (A 1) into (A 7)) the scalar value h is solved as 

then the purified solution of the inviscid mode is given from (A l), as 

Appendix B 
in the air and two +wy, +wa 

in the water, each of which fulfils the boundary conditions at  infinity, have been solved 
under a trial eigenvalue, then the error in the eigenvalue is estimated as follows. 
General solutions +w in the water and in the air are represented by these particular 
solutions, as 

and 

respectively, where Xi's are scalar coefficients of linear combination. Substituting 
the values of (B 1) at y = 0 into the interfacial boundary conditions (4.5)-(4.8)) four 
linear algebraic equations for Xi's are obtained, and they are represented in a matrix 
form as 

If the two independent particular solutions +ay, 

(B 1) 
9, = XI+W,+X 9 
+a = x, +ay + x4 +a17 "I 

[AijI {Xj> = (01, (B 2) 

where all components Aii of the matrix are represented by known values. The deter- 
minant of the matrix must be zero, that is 

p i 3 1  = 0, (B 3) 

for non-trivial solutions (X,} to exist. For a trial eigenvalue c, in general, the 
determinant is not equal to zero and a residual value E exists as 

IA&l = g, (B 4) 

where c and E are complex variables, and E is zero for the true eigenvalue. The problem 
of finding the root of the complex variable equation is solved with a trial and error 
method. 
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( d )  ( h )  

Plate 1 

FIGURE 1. A sequence of photographs of the water surface t,akcn after the start of t h  wind a t  
0.6  s intervals by a camera facing vertically downward. The w i i d  was 6.3 m s-', from the left to 
the right of each picture. The white circles seen in tlie carlicr pictures are tho iinagcs of a strobo- 
scope. The dist,irict,iori botweeri tlie initial wavrlcts ( c )  to (f) arid t,lw lat,cr wind waves (h)  is 
cltxarly seen. The tiincs measured in seconds from t . 1 1 ~  start of tllr % - i d  art%: ( a )  3.66; ( b )  4-24; 
( c )  4.84; (d )  5.42; ( e )  6.01; (f) 6.60; ( 9 )  7.20; ( h )  7.80. 
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